

Alexander Hosea School

Calculation Policy

'roots to grow, wings to fly'

December 2022

Our aim is to build resilient Mathematicians who are not afraid to solve problems and have a foundation of different methods and strategies to draw on. This calculation policy explains the different methods and strategies that can be taught at each stage to help develop confident mathematicians.

Foundation Stage Addition

Pre-calculation, children explore numbers using the Boolean Mastering Number approach which includes a focus on subitising. Subitising is being able to look at a group of objects and recognise how many are there without counting.

As part of the Boolean Mastering Number approach, children using Numberblocks to explore different numbers and the relationships between numbers.
Explore part -
part whole
relationship -
combining two
parts to make a
whole.

	Pictorial Recording by - drawing jumps on prepared lines Start at the larger number on the number line and count on in ones to find the answer. Abstract Place the larger number in your head and count on the smaller number to find your answer. $7+4=11$
	Year 1 - Addition
Combining two parts to make a whole: part whole model. Joining two groups and then recounting all objects (lots of practice making 10 and numbers to 10 e.g. $6+$ $4=10$ or $3+$ $5=8$) before moving on to numbers up to 20 .	
Regrouping to make 10. This is an essential skill for column addition later.	Concrete Using tens frames, Numicon or rekenrek, start with the bigger number and then use the smaller number to make the 10. $6+5=11$ (one group of 10 and one more) Pictorial Use pictures or a number line. Regroup or partition the smaller number using the part-part whole model to make 10 . $9+5=14$

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multicolumn{4}{|l|}{\begin{tabular}{l}
Abstract
\[
6+5=11
\] \\
If I am at 6, how many more do I need to make 10 ? How many more do I add on now?
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Number Bonds Learn number bonds to 20 and demonstrate related facts. Addition and subtraction taught alongside each other as pupils need to see the relationship between the facts.} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 6+4=10 \\
\& 4+6=10 \\
\& 10-4=6 \\
\& 10-6=4
\end{aligned}
\] \\
Tens Frame
\end{tabular} \& \begin{tabular}{l}
\(6+4=10\) \\
(10) \(4+6=10\) \\
\(10-4=6\) \\
\(10-6=4\) \\
Part Whole Model
\end{tabular} \& 6

$6+4$
$4+6$
$10-4$
$10-6$

Bar \&

\hline \& \multicolumn{4}{|l|}{| Identify chains of reasoning: $\begin{aligned} & 8+4=12 \\ & 4+8=12 \\ & 12=4+8 \\ & 12-8=4 \\ & 12-4=8 \end{aligned}$ |
| :--- |
| Children have time to explore and see relationships to 20 and beyond 20. |}

\hline \multicolumn{5}{|c|}{Year 2 Addition}

\hline Add a two digit number and ones \& | Concrete |
| :--- |
| Use a pattern $17+5$ |
| $27+5$ $37+5=$ |
| Pictorial |
| Draw: could use a \square \square | \& | s frame to make te |
| :--- |
| Rekenrek can numbers with |
| ar model or number | \& exp \&

\hline
\end{tabular}

	Abstract Explore related facts: Explore related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-17=5 \\ & 22-5=17 \end{aligned}$
Add a two digit number and tens	Concrete Use dienes to add tens, explore how the ones do not change. 2 $5+40=65$ Pictorial Use number lines and number squares to add multiples of 10 . Abstract $\begin{aligned} & 23+10=33 \\ & 23+20=43 \\ & 23+\square=53 \end{aligned}$
Add two 2-digit numbers	Concrete Model using dienes, place value counters and Numicon (as above) Pictorial Bridging $\begin{aligned} 23+12 & =23+10+2 \\ & =33+2 \\ & =35 \end{aligned}$ Abstract Partition into tens and ones and recombine $\begin{aligned} & 12+23=10+2+20+3 \\ & 10+20=30 \\ & 2+3=5 \\ & 30+5=35 \end{aligned}$

Add 31 digit numbers	Concrete Combine objects to make ten if possible and then add third number (or bridge ten and then add third number) $4+6+3$ Pictorial Regroup and draw representation Abstract $\begin{aligned} (4)+7+6) & =10 \mid+\square 7 \\ & =17 \end{aligned}$ Combine number that make ten(or bridge ten) then add the third number.
	Year 3 Addition
Column addition with no regrouping	Concrete Model using dienes. $24+15$ Add together ones first and then tens. Move on to place value counters Pictorial Children to draw dienes or place value counters in a place value frame: Abstract Children taught to add ones first, then tens then hundreds. $\begin{array}{r} 233 \\ +124 \\ \hline 357 \end{array}$

Column addition with regrouping	Concrete Exchange ten ones for a ten. Model using dienes and place value counters. Pictorial Children can draw dienes or Place value counters on a grid to support understanding: $34+17$ Bar models: Part-part whole model: Abstract Start by partitioning numbers before moving to compact: $\begin{gathered} 47+76 \\ 40+70=110 \\ 7+6=13 \end{gathered}$ 110 13 123 Finally once understood moving on to contracted format: $\begin{array}{r} 76 \\ +\quad 47 \\ \hline \frac{123}{11} \end{array}$

Year 4-6 Addition	
Y4 Add numbers with up to 4 digits	Concrete Use dienes or place value counters to exchange hundreds, tens and ones. (see above year 3 concrete) Pictorial Draw representations using place value grid. Abstract Progressing to numbers with at least four digits $\begin{array}{r} 3587 \\ +\underline{675} \\ \underline{4262} \\ \hline \end{array}$ Continue with previous learning on carrying but now progressing to carrying hundreds as well.
Y5 Add numbers with more than 4 digits. Add decimals up to 2 places, including money.	Concrete Introduce decimal place value counters and model exchange for addition. Pictorial Children could draw representations using place value grid. Abstract Extend abstract methods to numbers with any number of digits and decimals with 1 and 2 decimal places. $\begin{aligned} & 124.9+117.25=242.15 \\ & \\ & +\frac{124.90}{\frac{117.25}{11}} \end{aligned}$

Y5/6 Add several numbers of increasing complexity Including adding money, measure and decimals with different numbers of decimal points.	$E 23: 59$ $+£ 7 \cdot 55$ $€ 31 \cdot$ 1 Insert Zeros as place holders to prevent errors of putting numbers in the incorrect places. $\begin{array}{r} 23 \cdot 361 \\ 9 \cdot 080 \\ 59 \cdot 770 \\ 1 \cdot 300 \\ \hline 93.511 \\ 21 \end{array}$
Foundation Stage - Subtraction	
Part, Part Whole model	Link addition and subtraction using the part, whole model. As with addition use concrete and pictorial version of whole and part. Boolean Mastering Number approach continued when learning about subtraction.
Take ones away	Concrete Using range of objects and taking away a number of objects from the set. Pictures / marks Sam spent $4 p$. What was his change from 10p?
Using the ten frames, Numicon, rekenreks and number lines to support subtraction by taking away	Use of Numicon: Number lines (numbered) 11-7 (Counting back)

	The difference between 7 and 11 (Counting up)
Year 1 Subtraction	
Represent and use number bonds and related subtraction facts within 20	Concrete As with addition use part, part whole models, tens frames, bar model number lines and Numicon to model the inverse relationship with addition. Pictorial Use pictorial representations to show the part. Bar model to show inverse relationship. Abstract Move to using numbers within the part whole model.
Regroup a ten into ten ones	20-4 = use dienes to change a ten into ten ones to subtract. Draw the dienes and subtract.
Year 2 Subtraction	
Subtracting Multiples of 10. Using the vocabulary of 1 ten, two tens, etc, alongside 10, 20,30 is important	$40=60-20$ Concrete Use dienes blocks to subtract 10 s Moving on to crossing off pictorial tens blocks.

Partitioning to subtract without regrouping.	$=23$ by taking tens.	$54-12=42$ $73-22=51$ $36-13=23$ Concrete Use Dienes to show how to partition the number when subtracting without regrouping Children can then move to ${ }^{85-32=53}$ drawing pictorial representations of dienes and crossing off. Finally move to abstract 36-13 way ones from the ones and then tens from the
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Subtraction is taught as counting back and counting on depending on the numbers. $42-39=$ counting on mentally or using number line. Subtract 9 or 11. Begin to add/subtract 19 or 21 $35-9=26$ Bridging $27-14=13$ $93-76=17$ $20-10=10$ $7-4=3$	

Year 3 Subtraction	
Column subtraction without regrouping	Concrete Use dienes in columns to model this first. Pictorial In columns but still using pictorial images of dienes. Abstract $\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Using this intermediate step to explain before moving to compact method.
Column subtraction with regrouping	Concrete Begin with dienes and move to place value counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange. Pictorial Children may draw dienes or place value counters and cross off. \square ㅁㅁ $45-29=16$ $0=16$

	Abstract Begin by partitioning into place value columns. Then move to formal compact method.
Year 4-6 Subtraction	
Subtracting tens and ones Y4 Subtract with up to 4 digits. Introduce decimal subtraction through context of money	Concrete Model the process using place value counters first. Pictorial Children may draw dienes or place value counters to support. Abstract Move to 4 digit subtraction with exchange.
Y5 Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimals.	Use zeros as place holders.

Y6	
Subtract with increasingly large and more complex numbers and decimal values.	$\begin{array}{r} \circ 14816,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline 615.3 \mathrm{k} 19 \mathrm{~kg} \\ 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array}$
Foundation Stage- Multiplication	
DoublingExperience equal groups of objects. Problem solving with doubling. Count in 2 s , looking at odds and evens.	They will think about doubling when solving practical problems. Using a range of different materials and objects. Move on to pictorial parts and whole when ready.
Year 1 Multiplication	
Counting in Multiples of 2, 5 and 10 from zero. Children should count the number of groups on their fingers as they are skip counting. Making equal groups and counting the total	Concrete Count the concrete groups as children are skip counting, children may use their fingers as they are skip counting. 000000000000 o000000 00000 00000000000000 00000000000000 00000000000000 0000 - Countrig on sets of twas (A)

	Pictorial Children make representations of the groups, to show counting in multiples. Abstract Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \\ & \hline \end{aligned}$
Repeated addition	Concrete Use different objects to add equal groups. Pictorial Use pictorial as well as number lines to solve problems. Make equal jumps on the number line. Abstract Write addition sentences to describe objects and pictures. $5+5+5+5=20$
Understandin g arrays	Concrete and pictorial Use different objects (or pictures of objects) set out in arrays to find answers to problems such as 2 groups of 3. Abstract Move to writing as multiplication 2 groups of 4 can be written as $2 \times 4.2 \times 4=8$
	Year 2 Multiplication
Counting in multiples of 2,	Use concrete and pictorial ways to represent groups of objects (see year 1)

Children know all times tables up to 12×12 and related division facts.	200 100 10 10 10 10 1 200 1 (100) 10 10 10 1	Children may start with a concrete and Pictorial recap
	(00) 100 10 10 10 10 1 (10) 10 10 10 10 1	from year 3 with place value counters to represent the multiplication (473×2) as a grid.
	The ones, tens and hundreds are then added.	
Column multiplication	$\times 3$	
for a 3 or 4	$12 \quad(3 \times 4)$	
digit number by a single digit.	$\begin{array}{r} 30(3 \times 10) \\ +900(3 \times 300) \end{array}$	$\begin{array}{r} 237 \\ \times \quad 4 \\ \hline 948 \\ 1 \end{array}$
Multiply 3 single digit numbers.	942	
Year 5-6 Multiplication		
Y5	Manipulatives may still be used by some children with the corresponding long multiplication modelled alongside.	
Column multiplication including multiplying 4digit number by a single digit before moving on to multiplying pairs of 2-digit numbers and progressing to multiplying a 4digit number by a 2-digit number using formal long multiplication method.	Multiplication of 2-digit Estimate first: $70 \times 40=2800$ $\begin{array}{r} 72 \\ \times \quad \begin{array}{r} 38 \\ \hline \mathbf{5 7 6} \\ \hline \mathbf{2 1 6 0} \\ \hline \mathbf{2 7 3 6} \\ \hline \end{array} \mathrm{r} \\ \hline \end{array}$	numbers by a 2-digit number. 0
Y6	Remind children that the column. Line up the decim answer.	gle digit belongs in the units points in the question and the

Multiplying decimals up to 2 decimal places by a single digit.	$\begin{array}{r} 3 \cdot 119 \\ \hline 28 \\ \hline 25 \cdot 52 \end{array}$
Foundation Stage - Division	
Sharing practical objects. Hearing and being exposed to language to describe half and seeing visual representation Developing an understanding of equal.	Concrete I have 10 cubes, can I share them equally into 2 groups. Exploring using various objects which numbers can share into 2 groups and which can't.
Year 1 - Division	
Division as sharing and grouping	Using Concrete and pictorial to share and group to solve problems. Sharing - 6 sweets are shared between 2 people. How many do they have each? $6 \div 2$ can be modelled as: Grouping - There are 6 sweets. How many people can have 2 each? (How many 2's make 6?)
	0 2 4 6

Year 2 Division	
Division with sharing and grouping	As with year 1. Lots of experience of sharing and grouping with concrete objects (use cubes, counters, objects or place value counters to aid understanding) Use pictorial images and number lines to show groupings. Use of arrays, showing the link between multiplication and division. Abstract Leading to written number sentences. $28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Year 3 Division	
Division as grouping	Concrete and pictorial Use cubes, counters, numicon, objects or place value counters to aid understanding. 24 divided into groups of $6=$ 4 How many groups of 6 in 24? $24 \div 6=4$ Use Place value counters to group. $96 \div 3=32$
Division as arrays	Use cubes, objects to make arrays. Make number sentences about the array, linking division to multiplication. Find inverse and 8 linking calculations. $3 \times 5=15 \quad 15 \div 5=5 \quad 15=3 \times 5$ $15=3 \div 5 \quad 5 \times 3=15 \quad 15 \div 5=3 \quad 15=5 \times 3 \quad 15=5 \div 3$

Year 4-6 Division	
Short division, divide at least 3 digit by a single digit Y4	Place value counters and drawing of dots (see year 3) can still be used to help dividing if needed. Abstract Begin with divisions that divide equally with no remainder. $\frac{15}{5 \longdiv { 7 5 }}$
Y5	Move onto divisions with a remainder
	$\begin{aligned} & 137 r 5 \\ & 79^{9} 6^{5} 4 \end{aligned}$
Y6	Finally move into decimal places to divide the total accurately.
	By Year 6 remainders should be written as a fraction of a quotient or decimal.
	$72 \div 5=14 \mathrm{r} 2$ written as $142 / 5$
	Or extended to: $\frac{14.4}{5 \longdiv { 7 2 . 0 }}$

Long Division, divide by a two digit number (Year 6)	Long Division Long Division is easiest thought of in 4 stages: DIVIDE MULTIPLY SUBTRACT BRING DOWN Remainders can be expressed as Fractions or decimals by continuing the long division sum. $\begin{array}{r} 5 \begin{array}{r} 25.2 \\ \frac{126.0}{26} \\ -10 \\ -25 \\ 10 \\ -10 \\ 0 \end{array} \end{array}$

